
Modeling Refining and Logistics Operations for the Global Hydrocarbon Supply Project

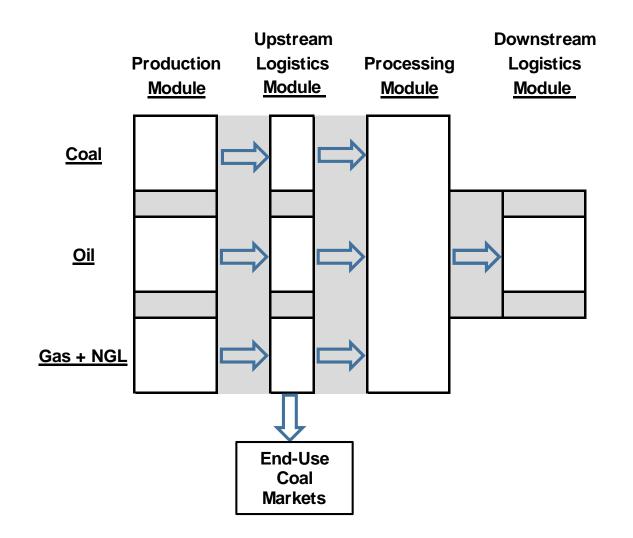
Dave Hirshfeld MathPro Inc.

EIA Global Hydrocarbon Supply Modeling Workshop April 10, 2014

GHSP Supply Modules: Current View

Another way of viewing the Logistics Module

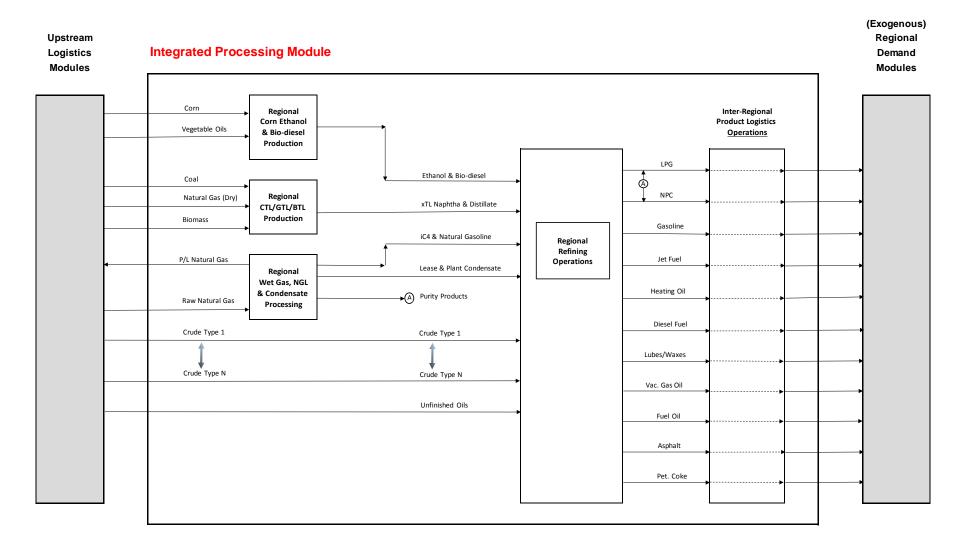
- Logistics operations for coal, oil, and natural gas have relatively little physical interactions with one another.
- ➤ In the long term, logistics operations do not constrain supply of energy commodities.
- > The Logistics Module should serve mainly as an accounting framework
 - Establishing volume and energy balances for each energy commodity transported
 - Placing a per-unit cost (e.g., \$/Bbl) on each source/destination/mode combination
 - Honoring exogenous capacity constraints imposed in near-term time period
- Focus on upstream logistics only.


Another way of viewing the Processing Module

- Processing operations in the real world incorporate numerous interactions between primary energy commodities.
- Outputs of natural gas and coal processing serve as inputs to petroleum processing (refining).
 - Lease, field, and plant condensate, NGLs
 - CTL and GTL liquids
 - Merchant hydrogen, MTBE
- > Some outputs of natural gas processing and petroleum refining are similar and compete in end-use markets (e.g., NGL, condensates).
- Model formulation techniques and underlying data structures for refining processes apply to other process flow operations as well.

Another way of viewing the Processing Module (cont'd)

- ➤ The Process Module could handle the processing of coal (e.g., CTL), natural gas, and crude oil in a single integrated module, rather than in separate sub-modules.
- The Process Module also could handle downstream logistics.
- > An integrated, all-commodity approach offers numerous benefits.
 - More direct representation of real world interactions
 - Similarities in modeling techniques and data structures
 - More efficient and stable computation.


GHSP Supply Modules: An Alternative View

- Processing Module
 - -- Integrated over coal, oil, & gas
 - -- Includes downstream logistics

- Logistics Module
 - -- Simplified
 - -- Accounting oriented
 - -- Upstream logistics only

Overview of an Integrated Processing Module

The Integrated Processing Module and the LFMM

- ➤ The diagram on the previous could serve to depict LFMM as it now exists in NEMS.
- LFMM already embodies
 - Multi-regional structure
 - Representation of refining, bio-fuels, CTL/GTL/BTL
 - Representation of downstream, inter-regional logistics
 - A robust scheme for classifying crude oils
- LFMM is scalable and data-driven.

Crude oil classes represented in LFMM

	Property Range	
Crude Oil Type	API Gravity	Sulfur
	(o)	(wt.%)
Condensate	> 50	
Ultra Light	45-50	0-0.5
Light Sweet	35-45	0-0.5
Light Sour	35-45	> 0.5
Medium Sweet	26-35	0-0.5
Medium Sour	26-35	> 0.5
Heavy Sweet	10-26	0-0.5
Heavy Sour	10-26	> 0.5
Synthetic Crude Oil	30-35	0-0.5
Dilbit	> 20	< 3.5

Representation of crude oil classes in GHSP

- Compatibility of LFMM and NEMS crude oil classes is important.
- The GHSP Processing Module must pass product prices to the demand modules
- Given a crude oil price, computed product prices reflect the interplay of:
 - Product slate
 - Refinery configuration
 - Crude oil slate and its properties
- Recognition of crude oil classes is essential to
 - Allocation of crude oils to refining regions
 - Calculation of refinery gate product prices
 - Estimation of refinery investment requirements.

Dave's modeling aphorisms – maybe trite but still true

- > A model should be as simple as possible, but not simpler.
- > The goal of analysis is insight, not precision.
- Analysis is done by analysts, not by models.
- > The bigger the model, the easier it is to forget these things.